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Abstract 
In this paper, we discuss a case study performed for 

validating a Natural Language (NL) based software 
requirements specification (SRS) in terms of 
completeness, consistency, and fault-tolerance. A partial 
verification of the Guidance and Control Software (GCS) 
Specification is provided as a result of analysis using 
three modeling formalisms. Zed was applied first to 
detect and remove ambiguity from the GCS partial SRS. 
Next, Statecharts and Activity-charts were constructed to 
visualize the Zed description and make it executable. The 
executable model was used for the specification testing 
and faults injection to probe how the system would 
perform under normal and abnormal conditions. Finally, 
a Stochastic Activity Networks (SANs) model was built to 
analyze how fault coverage impacts the overall 
performability of the system.  In this way, the integrity of 
the SRS was assessed. We discuss the significance of this 
approach and propose approaches for improving 
performability/fault tolerance. 

 

1. Introduction 

High assurance systems demand rigorously 
engineered software.  A failure in the control software of 
mission critical systems can be disastrous. It is difficult 
to create a reliable requirements specification because 
such control software tends to be highly complex. 
Moreover, it is well known that the majority of software 
errors are introduced during the requirements phase [1, 
2].  To avoid problems in the latter development phases 
and reduce life-cycle costs, it is crucial to ensure that the 
specification be reliable.  By reliable, we mean: (1) is the 
specification correct, complete, and consistent? (2) Can 
the specification be trusted to the extent that design and 
implementation can commence while minimizing the 
risk of costly errors? (3) How can we analyze the 
specification to prevent the propagation of errors into the 
downstream activities? 

The Guidance and Control Software (GCS) 

principally provides control during the terminal phase of 
descent for the Viking Mars Lander. The lander has three 
accelerometers, one Doppler radar with four beams, one 
altimeter radar, two temperature sensors, three 
gyroscopes, three pairs of roll engines, three axial trust 
engines, one parachute release actuator, and a touch 
down sensor. After initialization, the GCS starts sensing 
the vehicle altitude. When a predefined engine ignition 
altitude is sensed, the GCS begins guidance and control 
of the vehicle. The purpose of this software is to 
maintain the vehicle along a predetermined velocity-
altitude contour. Descent continues along this contour 
until a predefined engine shut off altitude is reached or 
touchdown is sensed.  The ARSP (Altimeter Radar 
Sensor Processing) is a sub-module of the GCS. This 
functional unit reads the altimeter counter provided by 
the altimeter radar sensor and converts the data into a 
measure of distance to the surface of Mars. If uncovered 
failures occur, the lander could fail to land on the surface 
even though it had successfully traveled the long 
distance from Earth to Mars.  Therefore, assessing the 
SRS for the reliability and performability is required for 
the mission critical software [3, 4]. 

1.1. Related Works 

There have been numerous studies conducted that 
combine a Zed representation with some formal method 
or design notation.  A hybrid formal method, called PZ-
nets that combine Petri nets and Zed notations, was 
developed [5]. The benefits provide a unified formal 
model for specifying the overall system structure, control 
flow, data types and functionality. Sequential, concurrent 
and distributed systems are modeled using a valuable set 
of complementary compositional analysis techniques. 
This approach has been successfully applied to model 
some known high assurance and concurrent systems.  
However, the lack of modular and hierarchical facilities 
precludes this approach to be applied to large systems.  

Bussow and Weber present a mixed method 
consisting of Zed notations and Statecharts [6]. Each 
method was applied to a separate part of the system.  Zed 
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was used in defining the data structures and 
transformations. Statecharts were used in representing 
the overall system and showing the reactive behavior. 
The Zed notations were type checked with the ESZ type 
checker but the Statechart semantics were not fully 
formalized. In addition, we reviewed several other case 
studies that utilized Zed for concretely defining data 
while using Statecharts as a behavioral description and 
evaluation method [7-9]. 

Hierons, Sadeghipour, and Singh present a hybrid 
specification language µSZ[10]. The language uses 
Statecharts to describe the dynamical system behavior 
and Zed to describe the data and data transformations. 
Their data abstraction technique uses information 
derived from the Zed specifications to produce an 
extended finite state machine (EFSM) defined by the 
Statecharts. The EFSM poses properties that can be 
utilized during test generation. These properties help 
solve the problems of setting up the initial state and 
checking the final state of a test to assist in test 
automation. Both the dynamic behavior specified in 
Statecharts and the individual operations are checked 
using this method.   

Dugan and Trivedi present several different models 
for predicting coverage in a fault tolerant system to 
illustrate their methods for accurately predicting and 
assessing dependability [11]. They classified three error 
categories: permanent, intermittent, and transient. 
Models used in their study were Markov, semi-Markov, 
non-homogeneous Markov, and extended stochastic Petri 
Nets. They investigated the sensitivity of the system 
reliability to the coverage parameter and the sensitivity 
of the coverage parameter to various error handing 
strategies.  

Sanders and Malhis showed the applicability of 
SAN in dependability evaluation [12]. State space 
explosion is a common problem when using Markov 
models directly for analyzing a realistic design. SANs, 
together with reduced base model construction 
techniques, can result in tractable Markov models for 
many parallel and distributed systems. 

In our study, Zed was used to clarify ambiguous 
statements found in the SRS. Zed was chosen because it 
provides a concrete way to transform requirements into 
state-based models using the schematic structuring 
facilities. The transformation elucidates assumptions and 
provides mechanisms for refining abstract specifications 
into concrete ones for clarifying data and functional 
definitions. Statecharts were chosen to model the Zed 
specifications because a key goal was testability and pre-
development evaluation. A clear distinction of our 
approach with other approaches is that we did not 
combine Zed and Statecharts together. We translated the 
SRS into Zed completely and then translated the Zed 
specification into Statecharts.  Stochastic Activity 

Networks (SANs) were used to assess the dependability 
of the software in terms of fault detection and coverage 
since it is well suited for performability and 
dependability modeling.   

1.2. Completeness and Consistency 

The completeness of a specification is defined as the 
lack of ambiguity from the implementation perspective. 
The specification is incomplete if the system behavior is 
not specified precisely because the required behavior for 
some events or conditions is omitted or is subject to 
more than one interpretation [13]. Consistency means 
that the specification is free from conflicting 
requirements and undesired nondeterminism [14].   

1.3. Fault Tolerance 

Traditionally, fault-tolerance has referred to building 
systems from redundant parallel components [15]. A 
fault-tolerant system is a system that has the ability to 
respond to unexpected hardware or software failures. 
Components in a system interact with each other as well 
as the environment. There are many levels of faults may 
occur in any component. The undesired operation inside 
the component, an error propagated from another 
component, or user error (mistake) can cause faults.  

Theoretically, no system is absolutely fault free. 
There are plenty of catastrophic failures to substantiate 
this [16].  The probability of system failure decreases in 
accordance with a cautious specification and design 
process. However, the more complex the system, the 
more difficult it is to achieve high performance and fault 
tolerance.  

Software is considered as fault-tolerant (robust) if 
and only if the software: (1) is able to compute an 
acceptable result even if the program itself suffers from 
incorrect logic; and (2) whether correct or incorrect, is 
able to compute an acceptable result even if the software 
itself receives corrupted incoming data during execution. 
The key to this definition is to determine what is 
"acceptable." For the ARSP module of the GCS, the 
“acceptable” result means the distance from the vehicle 
to the surface of Mars, computed by the ARSP, should 
be accurate enough to result in a successful landing. If 
there are deviations, these errors should not cause false 
actions in other modules that may lead to catastrophic or 
incorrect operation. 

1.4. Informal and Formal Specifications 

The typical SRS highly depends on natural 
language. Natural language based specifications are 
often subject to multiple interpretations.  Even when 
such specifications are developed systematically, it is 
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difficult to ensure their integrity without some form of 
correctness checking.  Generally, correctness checking 
obligates the use of a mathematically based requirements 
specification language (RSL).  Such languages are 
notoriously difficult to understand, and minimally 
require a proficient level of knowledge in discrete 
mathematics and/or some formal logic system.  This 
poses a serious concern to industry because many 
different classes of requirements exist.  Different 
stakeholders typically represent various ways of looking 
at the problem. Thus, a multi-perspective analysis is 
important, as there is no single correct way to analyze 
system requirements [17]. The usefulness of the 
requirements specification is diminished by not being 
understandable to the diverse set of stakeholders. 
Nevertheless, to avoid the confusion caused by 
ambiguity, the merits of two different mathematically 
based RSLs were investigated.  

2. Methods 

The sequence of the methods application is as 
follows.  First, the NL-based GCS specification was 
transformed using the Zed notation.  Zed Schemas were 
abstracted from GCS components. This compositional 
process helped to clarify ambiguities. Second, the 
Schemas were transformed into Statecharts/Activity-
charts and symbolically executed to assess the model’s 
behavior using the GCS-specified mission profile. 
Finally, a SAN model was developed to analyze the fault 
tolerance of the system. In this section, we provide brief 
descriptions of each method that were used in this study. 

2.1. Zed  

The Zed notation is a mathematical language with a 
theory of refinement between abstract data types. In 
combination with natural language, it can be used to 
produce a formal specification. We may reason about 
this specification using the proof techniques of 
mathematical logic. We may also refine the 
specification, yielding another description that is closer 
to executable code [18]. Schema's are the main 
structuring mechanism used to create patterns and 
objects. The notation is used to model systems in terms 
of state. We describe the state of the system and explain 
the relationship between ARSP and the state of various 
components. The production of such a specification 
helps us to understand requirements, clarify intentions, 
and construct proofs (i.e., identify assumptions and 
explain correctness). These facilities provided by Zed 
were useful and essential in clarifying ambiguities and 
solidifying our understanding of the requirements. 

2.2. Statecharts  

Statecharts consist of <S, T, E, V> where S is a set 
of states, T is a set of transitions, E is a set of events and 
V is a set of variables. States are either BASIC, OR, or 
AND states where BASIC states have no sub-states 
while OR states do have sub-states that are related to 
each other by an exclusive-or relation. Being in an OR 
state means being in only one of its sub-states. AND 
states have sub-states, called orthogonal components, 
that are related by an and relation. Being in an AND 
state implies that being in all of its orthogonal 
components. Changes among states are represented by a 
transition (i.e., event [condition] / action). An event is an 
instantaneous occurrence of a stimulus (trigger), a 
condition is a predicate that must be satisfied for a 
transition to occur and an action may generate other 
events or perform computations.  Thus, Statecharts = 
finite state machines + depth + orthogonality + 
broadcast. The depth is achieved by OR states and 
orthogonality is achieved by AND states. Broadcast is 
used to communicate among states and is achieved by 
the action of a transition. In other words, when a 
transition is triggered, an action generates an event and 
this event is assumed to be globally broadcast [19]. 

Statecharts (STATEMATE Magnum, a product of i-
Logix, was used for this case study.) provide a natural 
way to specify complex reactive systems both in terms of 
how objects communicate and collaborate and how they 
carry out their own internal behavior. Together Activity-
charts and Statecharts are used to describe the system 
functional building blocks, activities and the data that 
flows between them. These languages are highly 
diagrammatic in nature, constituting full-fledged visual 
formalisms, complete with rigorous semantics providing 
an intuitive and concrete representation for inspecting 
and checking for conflicts [20]. These two formalisms, 
Activity-charts and Statecharts, were used to specify our 
conceptual system model for symbolic simulation.  In 
this way, we verified our assumptions, injected faults, 
and identified hidden errors constituting inconsistencies 
or incompleteness in the specification. 

2.3. SANs  

Stochastic Activity Networks is an extension of the 
Generalized Stochastic Petri Net. In addition to 
transitions (called activities) and places, SANs use two 
new types of components: Input gates and Output 
gates[21]. Input gates are used to connect places with 
activities. Each input gate is associated with a predicate 
and a function. In order to enable the activity, all 
predicates of its input gates must be true and all places, 
immediately connected to it, must contain at least one 
token. The function of the input gate specifies how to 
change the tokens of the places that connect to this input 
gate. Output gates are associated with functions. Like 
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input gate functions, output gate functions also specify 
how many tokens are removed from or added to the 
places that are connected to the output gate. 

When an instantaneous activity is enabled, it can fire 
immediately. If it is a timed activity, it can fire after a 
time delay determined by the assigned probability 
distribution. The firing of an activity results in: (1) all 
input gate functions are executed, (2) each immediately-
connected input place has one token removed, (3) all 
output gate functions are executed, and 4) each directly-
connected output place has its token incremented. 

3. Transformation of the Different 
Specifications 

We now discuss the transformation from the SRS to 
the Statecharts representations via Zed. The Altitude 
Radar Sensor Processing (ARSP) module specification 
showing inputs, outputs, and subsystem processing 
descriptions was chosen for the purpose of our study.  

 

 
 

FRAME_COUNTER? : N 
AR_ FREQUENCY? : R 
AR_COUNTER? : Z 
K_ALT_1, K_ALT_2, K_ALT_3, K_ALT_4, K_ALT_NEW: {0,1}  
AR_ALTITUDE_1, AR_ALTITUDE_2, AR_ALTITUDE_3, AR_ALTITUDE_4, 
AR_ALTITUDE_NEW: R 
AR_STATUS_1, AR_STATUS_2, AR_STATUS_3, AR_STATUS_4, 
AR_STATUS_NEW: {healthy, failed} 

K_ALT: K_ALT_1 x K_ALT_2 x K_ALT_3 x K_ALT_4 
AR_STATUS: AR_STATUS_1 x AR_STATUS_2 x AR_STATUS_3 x 

AR_STATUS_4  

AR_ALTITUDE: AR_ALTITUDE_1 x AR_ALTITUDE_2 x AR_ALTITUDE_3 x 
           AR_ALTITUDE_4 

AR_COUNTER? e -1..32767 
AR_FREQUENCY? e 1..2450000000 
FRAME_COUNTER? e 1..2147483647 
AR_ALTITUDE_1 e 1..2000 ¶ AR_ALTITUDE_2 e 1..2000 ¶ 
AR_ALTITUDE_3 e 1..2000 ¶ AR_ALTITUDE_4 e 1..2000 ¶ 
AR_ALTITUDE_NEW e 1..2000 

ARSP_RESOURCE 

1 

2 

3 

4 
5 

6 
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RUN_PARAMETER 

EXTERNAL 

ARSP 

@INIT 

CALCULATE 

@ALTIMETER GUIDANCE_STATE 

SENSOR_OUTPUT AR_FREQUENCY 

AR_COUNTER 

FRAME_COUNTER 

AR_ALTITUDE 

AR_ALTITUDE 

AR_STATUS 

AR_STATUS 

K_ALT 

K_ALT 

INPUT 
AR_ALTITUDE AR_COUNTER 
AR_FREQUENCY AR_STATUS 
FRAME_COUNTER K_ALT 

OUTPUT 
AR_ALTITUDE AR_STATUS 

K_ALT  

PROCESS:   
It is only necessary that this functional module 

NAME:  FRAME_COUNTER 
DESCRIPTION:  Counter containing the number of the 
present frame 
USED IN:  AECLP, ARSP, CP, GP, TDLRSP 
UNITS:  none 

RANGE:  [1, 231-1] 
DATA TYPE:  Integer*4 
ATTRIBUTE:  data 
DATA STORE LOCATION:  EXTERNAL 
ACCURACY:  N/A 

Module Specification Data Dictionary 

Zed Specification 

Statecharts  

NL-Based SRS 

 
Figure 1 Mapping example from NL-based to Statecharts 

The SRS provides a data dictionary with variable 
definitions, type, units, and a brief description of 
variables and functions. This descriptive information is 
shown in [22].  We abstracted the NL-based module 
specification into Zed preserving variable names, 
operations (i.e., functionality), dependency and scope. 

Figure 1 provides an example, using the 
FRAME_COUNTER input variable that illustrates the 
complete translation from Zed to Statecharts. The 
FRAME_COUNTER is defined as an integer with range 
[1, 1231 − ]. In Zed, the FRAME_COUNTER is declared as 
a set of natural numbers in the signature part and the 
range of the variable is defined in the predicate part 
(lower half of the schema). The Statechart representation 
of the FRAME_COUNTER variable is presented with the 
direction of data transfer from EXTERNAL into the 
ARSP Module (see Figure 1 for the details). Its type and 
value range are defined in the Statemate data dictionary. 

In translating from the NL-based SRS to Zed, four 
ambiguously specified requirements were identified. The 
first one concerns the rotational direction assumed by the 
use of the term “rotate.”  Secondly, an undefined third 
order polynomial was revealed that is used to estimate 
the AR_ALTITUDE value [22].  The third issue (i.e., 
ambiguity) concerns the use of the AR_COUNTER 
variable for two different purposes, which imply that it 
has two different types. Finally, there is uncertainty 
regarding the scope of the AR_COUNTER variable that 
brings into question which module should use and/or 
modify this variable.  

Given these various issues, two scenarios were 
considered. The first scenario assumes the 
AR_COUNTER is updated within the ARSP module 
while the second scenario does not.  Both scenarios were 
constructed separately and compared to understand how 
Zed could be useful in clarifying ambiguity and avoiding 
conflicts. Scenario one supposes that the separate 
constraints (i.e., one variable with different types) 
defined in the SRS should be represented by separate 
variables (i.e., Echo and AR_COUNTER).  In the SRS, 
the sign bit of AR_COUNTER represents whether the 
radar echo pulse is received on time. In scenario one, this 
condition is split off into the Echo variable while in 
scenario two the Echo variable is not introduced. The 
Zed specification is considered consistent with the SRS 
as long as the newly defined Echo variable does not 
cause a side affect outside of the ARSP module (i.e., if 
by chance, some other function/module accesses the sign 
bit).  

Because we have chosen in scenario one to 
introduce a new ARSP input variable we must decide 
where and how this variable is updated. Accordingly, we 
modified the Zed version of the ARSP specification to 
account for two separate variables. As a result of 
iterative refinements of the Zed specification, we found 
that the Echo variable must be treated as an additional 
ARSP input because there is no other way to determine if 
the radar echo pulse has been received. This in turn 
caused the whole specification to be revised to reflect the 
principle that mandates decoupling data [17]. Therefore, 
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the interpretation of scenario one is inconsistent with the 
SRS. On the other hand, in scenario two no additional 
variables were defined.  Only those variables defined in 
the SRS were specified and all the requirements 
specified in ARSP were covered.  Therefore, this 
reformulation of the SRS was considered as a complete 
and consistent transformation.  We chose scenario two 
for this reason as the basis from which to build the 
Statecharts. In this way, Statemate could be used to 
analyze a model that properly conformed to its 
requirements which we believed would be useful in 
feeding back the results of our assessment (i.e., symbolic 
simulation).  We also wanted to confirm what we had 
seen using Zed using this other type of formalism 
namely Statecharts and determined if indeed our 
reformulation revealed similar ambiguity. The details of 
the Zed specification for scenario two are described in 
[22]. 

4. The Transformation from Zed to 
Statecharts 

An ARSP project was created within the Statemate 
framework.  Graphic editors were used to create 
Statecharts and Activity-charts. Once the graphical forms 
were characterized, state transition conditions and data 
items were defined. 

 
INI

[MOD(FRAME_COUNTER, 2)=0]/ 
AR_ALTITUDE(3):=AR_ALTITUDE(2); 
AR_ALTITUDE(2):=AR_ALTITUDE(1); 
AR_ALTITUDE(1):=AR_ALTITUDE(0); 
AR_STATUS(3):=AR_STATUS(2); 
AR_STATUS(2):=AR_STATUS(1); 
AR_STATUS(1):=AR_STATUS(0); 
K_ALT(3):=K_ALT(2); 
K_ALT(2):=K_ALT(1); 
K_ALT(1):=K_ALT(0) 

[MOD(FRAME_COUNTER, 2)=1]/ 
st!(CALCULATE) 

CURRENT_STATE 

KEEP_PREVIOUS_VALUE> CALCULATION 

 

Figure 2 ARSP INI Statechart 

These items and/or conditions trigger activities and 
state transitions that occur within the Statemate model 
based on definitions within the “data dictionary” and/or 
the “data bank browser.” The Activity-chart (Statechart 
part of Figure 1) and Statecharts (shown in Figure 2, also 
refer the [22]) reflect all variables/conditions defined in 
our Zed formulation. During simulation, various color 
changes help to show the sequence of state changes that 
occur to validate the system according to its specified 
structure (based on our Schema signatures) and 
constraints (based on our Schema predicates). We 
changed initial (and current) values and conditions while 
at the same time rerunning and/or resuming the 
simulation in the process of verifying our assumptions 
against the Statechart specification. In this way, we 
exercised the Statechart-based model and generated C 
code directly from the charts.  

 EXTERNAL RUN_PARAMETERS 

SENSOR_OUTPUT GUIDANCE_STATE 

TDLRSP 
.3 

GSP 
.4 

ARSP 
.2 

ASP 
.1 

TSP 
.5 

TDSP 
.6 

 
Figure 3 DFD 2.1 SP - Sensor Processing [23] 

The ARSP Activity-chart shows the data flow 
between the data stores and the ARSP module based on 
the information (albeit it does not show which 
parameters go where.)  The direction of the data flow is 
given by Figure 3, which follows from the information 
contained in the SRS data dictionary [23]. 

5. Integrating Fault Tolerance to the 
ARSP Specification 

The GCS software runs in a harsh environment and 
depends on correct operation of the hardware. Cosmic 
radiation could cause memory bits to flip, and hardware 
sensors might fail. These hardware failures are beyond 
the level that GCS software can control, although the 
GCS must detect such failures; the actual masking 
counter measure would typically be accomplished 
through redundancy (i.e., using error correction memory 
or shielding the memory from radiation, and providing 
backup sensors in case of sensor failure).  

As shown in Figure 3, the ARSP is a component of 
the sensor processing logic and consequently a 
component of the entire GCS software system. Sensor 
data are fed into the ARSP to produce a measure of 
distance from the vehicle to the surface of Mars. The 
value of altitude is the output of ARSP and is further 
used by other components to guide the terminal decent of 
the vehicle. As long as the output is correct, the ARSP 
does not introduce errors to the system.  

There are two possible sources of error. One is an 
input error, which would cause an incorrect output. The 
other case would involve some logical ARSP design 
flaw. This type of error would cause correct input data to 
produce incorrect output. The goal of fault tolerance in 
the ARSP is to detect and cover these errors so that no 
error will propagate to other system components.    

 A robust specification should specify how to cope 
with errors. It is not only important to specify a correct 
algorithm but also how to handle errors or exceptions.  

An internal error is truly an unexpected error. It not 
only depends on a carefully designed specification but 
also on its correct implementation. In order to detect and 
cover an internal error, the specification can require 
different implementations running in parallel. The 
outputs of all running implementations are checked. If 
there are differences between them, there might be an 
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internal error. We can further decide which one has an 
error and use the correct output. We can also force the 
faulty one to shut down or restart. 

6. Specification Testing  

Now we discuss the results of our validation effort 
based on symbolic simulation of the ARSP Statechart 
model.  In effect, we verified that the ARSP subunit 
requirements are complete and consistent by running the 
simulation against all of the Activity/Statecharts. The 
data used in the simulation is provided in Table 1. 

Table 1  ARSP Specification Test Cases 

Variable Case 1 Case 2 Case 3 Case 4 Case 5 
FRAME_COUNTER 2 2 1 1 3 

AR_STATUS DC DC [0, 0, 0, 0] DC [0, 1, 0, 0] 
AR_COUNTER -1 19900 -1 20000 -1 

 X  Event occured, DC  Don’t Care. 

Table 2  ARSP Outputs from the Simulation 

Variable Case 1 Case 2 Case 3 Case 4 Case 5 
AR_STATUS KP KP [1, 0, 0, 0] [0, -, -, -] [1, 0, 1, 0] 

K_ALT KP KP [1, 1, 1, 1] [1, -, -, -] [0, 1, -, 1] 
AR_ALTITUDE KP KP [*, -, -, -] [2000,-,-,-] KP 

-  Don’t care,  KP  Keep Previous value,    *  An estimated value. 

Five conditions (Case 1-5) as shown in Table 1 
were defined to test the charts we developed. They 
represent the way we visualized and were able to 
scrutinize the Zed specification. The AR_FREQUENCY 
value was fixed at 1,500,000,000 to calculate the value 
of AR_ALTITUDE for all test cases. In the material 
presented below, we’ll explain how each of the 
conditions was evaluated which should help to convince 
the reader that the ARSP subunit is significantly complex 
(one of six different sensor units used by the GCS). 

The values of the ARSP output variables are given 
in Table 2 (KP in indicates that the first two element 
values of the output are same). All the output values are 
the same as expected. All the transitions, activities, and 
states in the charts were activated precisely as expected. 
All of the variables were updated as expected. The 
expected values were calculated based on the given 
equations in NL-base SRS.  Therefore, the result of this 
simulation show the previous Zed specification was 
developed correctly.  

We used simulation of the specification for 
discovering hidden faults and their location. To 
accomplish this, faults were injected into the model to 
simulate a memory corruption (expected due to the harsh 
space born lander mission environment.) 

Four new issues arose during the fault injection 
process. (1) Some correct inputs produced incorrect 
outputs;  (2) The Statecharts approach has a better 
chance of predicting possible faults in the system. 
(Because the Zed spec cannot provide a way of 
predicting the transitions from state to state [Zed is not 
executable]); (3) During the symbolic simulation, we 

found some week points of the system where faults were 
lurking;  (4) Consequently, there are many designs 
decisions to be made in the process of developing a 
model (i.e., specification).  Finding the correct 
formulation is a process of refinement and validation, 
which was facilitated using formal specification and 
symbolic simulation. Some requirements were found to 
be inconsistent/incomplete because they produced 
incorrect results. 

Based on the simulation results using fault injection 
we discovered that the SRS was incomplete.  To remedy 
the situation we suggest that the AR_FREQUENCY 
value be bounded to prevent the AR_ALTITUDE value 
from exceeding its limit either one of the following 
condition should be included: 
1¯AR_FREQUENCY¯AR_COUNTER * 75000, or 
AR_COUNTER = -1 v (0 ¯ AR_COUNTER ¯ 
AR_FREQUENCY/75000). 
Without either one of the restrictions, the 
AR_ALTITUDE output value exceeds its limit.  

7. The Fault Coverage Analysis 

Figure 4 gives an abstract SAN model of the ARSP. 
There are only a few details about how the ARSP 
computes the output. Instead, we use the SANs to model 
fault coverage to evaluate the dependability of the entire 
system[12].  

The ARSP module can work in either of two modes: 
normal or diagnostic mode. In normal mode, the ARSP 
completes useful works. While in diagnostic mode, it 
concentrates on detecting and covering errors. Therefore, 
the ability to find and cover an error is stronger in 
diagnostic mode than in normal mode. The current 
working mode of the system is represented by a token in 
either the place normal or the place diag. Activity n2d 
represents the switching from normal working mode to 
diagnostic mode, while d2n for switching back to normal 
mode. Initially, the system is in normal mode, 
represented by a token in normal. If there is an input, 
represented by a token in place in, this input data could 
be incorrect with probability pInputErr, or correct with 
probability (1- pInputErr).  If the input data were 
incorrect, a token would be put in the place error. If the 
input data are correct, the internal error might cause an 
error to occur, and then a token would be put in the place 
error. An error in the system is represented by the token 
in the place error.  If there is an error, the system will try 
to detect and cover it. This system’s ability to cover an 
error depends on the system mode. If the system failed to 
cover the error, a token would be put in the place 
out_wrong, which means that the system produced an 
erroneous output. If no error occurs or the error is 
covered, a token will be put in the place out_right.  
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Figure 4 SAN model of ARSP 

We used the Accumulated Reward Solver of 
UltraSAN for two cases of analysis. We are interested in 
how the various parameters will affect the probability of 
output an error. In other words, what is the error 
probability of ARSP with fault tolerance added? In the 
first case, the input error probability varies from 0 to 0.2, 
and the time that the system is working in diagnostic 
mode takes 10% to 50% of the overall working time. The 
probability that the system can detect an error in normal 
mode is 0.6, i.e. pNDetect = 0.6. While in diagnostic 
mode, this probability is 0.95, i.e. pDDectect = 0.95. 
This result is illustrated in Figure 5.  

We can see that the more time spent in diagnostic 
mode the less the probability of producing an incorrect 
output. However, the ARSP is a real time module. It has 
to be responsive (perform timely) so that the whole 
system can function properly. The time spent in 
diagnostic mode should be limited. The output error 
probability is greater than zero when the input error is 
zero. This is exactly the case when the ARSP module 
produces an incorrect output from a correct input. This 
happens because we assume an internal fault/defect 
exists in the system and the probabilities of failure 
detection and coverage are less than 1.0. When the input 
error probability is large, say 0.20, the probability of an 
output error is much smaller (less than 0.1). Most input 
errors are covered by the system. Therefore, it is 
beneficial to use an error detection and coverage 
mechanism in the system. 

In the second case, the time spent by the system in 
diagnostic mode is fixed to 30% of the overall time. We 
also assume the input error probability is the same as in 
the first case. We want to see how the ability of detecting 
error influences the overall output error probability. The 
result of this analysis is illustrated in Figure6. Obviously, 
the higher the error detection ability, the lower the output 
error probability. When the system has lower error 
detection ability, for example pDDetect = 0.1, given an 
input error probability of 0.2, the output error probability 
is almost 0.14. However, if we increase the error 
detection ability to a degree such that all errors can be 

detected, the output error probability is much lower (less 
than 0.08), given the same input error. 
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Figure 5 Error Probability in different working mode 
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Figure 6 Error Probability with different detection ability 

The above two cases tell us that the output error 
probability decreases as the time spent in diagnostic 
mode increases or the ability to detect errors increases. 
As the input error probability increases, so do the output 
errors. Case 1 also shows that the output errors decreases 
significantly even when the system only spends 10% of 
the time in diagnostic mode. Therefore, the overall 
system dependability is increased if we use fault 
tolerance techniques. 

It needs to be mentioned that the results here are not 
the actual output error probabilities of the real ARSP 
module. The values of parameters used in those cases are 
for experiment only. In the real ARSP module of the 
GCS, input error probability should be very low and 
could not reach 0.2. The error detection ability also 
depends on the implementation and other factors of the 
system. The available time spent in diagnostic mode 
must be limited so that the system has enough time to 
finish its useful work. More case studies can be 
conducted to find out which parameters of the system are 
more faults sensitive. More attentions should be given to 
the sensitive parts when developing the system. 

8. Summary and Conclusion 

Even though the entire GCS specification was not 
validated, the result of our partial analysis revealed that it 
is beneficial to construct a complete and consistent 
specification using this method (Zed-to-Statecharts).  In 
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the process, we uncovered some ambiguity issues 
associated with how one would interpret the NL-based 
specification  

The outputs from the ARSP module were examined 
and shown to be consistent with our expectations by 
running simulations. All of the state activation/transition 
paths were in the correct order as expected for all test 
cases given by Table 1. Moreover, no nondeterministic 
state transitions were detected for all simulation runs 
(based on the conditions provided in Table 1). In this 
context, the simulation has provided a means for 
determining the consistency of the requirements. 

The output values from the simulation (Table 2) 
were checked and compared against the requirements 
then found to be valid. After running simulations using 
fault injection, we uncovered more issues confronting 
that the SRS is incomplete. Through the whole process 
of this study, we found that the SRS for the ARSP 
module is consistent yet not complete nor fault-tolerant. 
In other words, we assessed the consistency, 
completeness, and fault-tolerance of the specification 
that was derived from the NL-based SRS through Zed-
to-Statecharts transformation. Based on the simulation 
results, we were able to determine better the implications 
of the requirements to facilitate validation and 
refinement with the goal of this study.  

The fault coverage model revealed how the various 
parameters of the system influence the output error 
probability and, hence, the dependability of the overall 
system. A way to make the ARSP more reliable and fault 
tolerant was developed. An input error could be found by 
comparing the computed altitude with the estimated 
altitude. By running different implementations in parallel 
and comparing their results, we can also detect as well as 
correct some internal errors of the system. 

Our study has shown that it is beneficial to use both 
Zed and Statecharts combined with dependability 
modeling to validate the software requirements. Using 
these two RSLs provides a rigorous approach to 
correctness checking while dependability analysis has 
helped to evaluate alternate means of designing a robust 
and fault tolerant system. Consequently, this approach 
has successfully demonstrated how to avoid the problem 
that results when incorrectly specified products force 
corrective rework.   
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